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The influence of an impurity atom on the ~-electronic structure of long polyenes is considered 
using the unrestricted Hartree-Fock (UHF) method. It is shown that the substitution of a carbon 
atom in a long polyene chain is a local perturbation in spite of the nonlinearity of the UHF Hamiltonian. 
The conditions under which the local states appear in the forbidden zone of long polyenes are stated. 
Some experiments are proposed to elucidate the nature of the forbidden zone in the ~-electron spectra 
of long polyene chains. 

Der Einflug eines Fremdatoms auf die ~-Elektronenstruktur langer Polyene wird mit Hilfe der 
uneingeschr~inkten Hartree-Fock-Methode (UHF) untersucht. Es wird gezeigt, dab die Substitution 
eines C-Atoms in einer langen Polyenkette eine lokale St6rung darstellt, obwohl der UHF-Hamilton- 
operator nicht linear ist. Die Bedingungen, unter denen die lokalen Zustiinde in der verbotenen 
Zone fiir die langen Polyene erscheinen, werden dargestellt. Einige Experimente zur Aufkl~irung 
der Natur der verbotenen Zonen in den 7z-Elektronen-Spektren langer Polyenketten werden vor- 
geschlagen. 

La m6thode Hartree-Fock sans restrictions (UHF) est utilis6e pour 6tudier l'influence d'une 
impuret6 atomique sur la structure 61ectronique ~ des grands poly~nes. On montre que la substitution 
d'un atome de carbone dans une longue chaine poly6nique est une perturbation locale en d6pit de la 
non lin4arit6 de l'hamiltonien UHF. On 6nonce les conditions d'apparition des 6tats locaux dans 
la zone interdite des longs poly6nes. Certaines experiences sont propos6es pour 6lucider la nature de la 
zone interdite dans le spectre d'61ectrons ~ des longues chalneg poly6niques. 

Introduction 

The optical experiments have shown [1] that  the frequency of the first electronic 
t ransi t ion in polyenes tends to a non-zero value when the polyene chain is length- 
ened. Unt i l  recently this energy gap was supposed to arise from the instabil i ty 
of the equa l -bond  polyene configurat ion with respect to the bond  a l ternat ion 
[2, 31. Nevertheless, it has recently been shown that  the unrestr icted Hartree- 
Fock (UHF)  method  taking into account  electron correlat ion can be used to 
describe I the n-electronic spectra of large conjugated systems (polyenes, 
cumulenes,  polyacenes, graphite) [4-111. The papers [4 ,9 -11 ]  have dealt with 
the electronic structure of ideal polyene chains consisting of an even [4, 9] or 
odd [10, 111 n u m b e r  of ca rbon  atoms. 

1 Effect of projecting of the UHF wave function on the pure spin state is considered in Ref. [22] 
for the case of large systems. 
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Comparing with experiment only the values of energy gaps, obtained in the 
two different models, do not make it clear which of these models (or their com- 
bination [12]) is more realistic. One of the possible methods of investigating the 
electronic structure of periodic systems is to study the influence of the ap- 
propriately introduced defects on the energy spectra of these systems. That is 
why, to study the effect of disturbed periodicity on the electronic structure of 
polyene chains by means of the U H F  method is of interest. The same problem 
has been discussed in [13-151 under the assumption that the energy gap is due 
to the bond alternation. 

The U H F  Solution for Long Polyene Chains with an Impurity Atom 

The U H F  equations for an ideal polyene chain have the following form in 
the orthogonal AO representation [4, 9-111 

(j) (J) ~o + 2- + ~ C~(#) = Z U~(#, v) C~J2(v) 
v = l  (1) 

-= [ao + ?n~~ C~J2(#) + fl[(1 - 6.. t) C~J2(# - 1) + (1 - 6.,N) C(k~)(# + 1)1, 

where ct o and fi are the Coulomb and resonance integrals, y is the electron repulsion 
integral, .~(o)= ~ I-C(~(#)]2 are the electron populations of the #-th AO with t t / t  o- 

a-spin, a = T, ~. 
The solution of (1) is defined by the relations 

(1) / ~  Ck,,(# ) = [1 + (-- 1)u+l ~k'Cr s in#k/ l / i  + ~ ,  (2a) 

(2) b / ~  ~ Ck, (#)= [(-- 1) u+l -- ~kG] sin #k/l//1 + ~2, (2b) 

G(k 1)  ~ -  - -  e(k 2 )  = - -  ]/4fl z cos 2 k + a 2 , (3) 

where N>> 1 is the number of carbon atoms in the chain. The self-consistent 
value of a is found from the equation 

n / 2  

-7 ~ dk(4fl2cos2k +a2) -a/2= 1 ; 
7"C 0 

(a = T) (4) 

~= -1, (a=~) 

~k = [2fl cos k + I//4-B 2 cos 2 k + a2j/a. (5) 

The width of the forbidden zone between the energy levels e~a) occupied in 
the ground state and empty levels e(~ 2) is equal to 2a. It follows from (2)-(5) that 

(o)_ 1 2r .y  .~z sin2#k 1 
n . r  ~- +( -1)~+~ ~ o dk e(k2 ) - 2 +(-1)u+~3u" (6) 
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As is seen from (6) the values of 6 u depend on an atom number #. The analysis 
of (6) shows that this dependence occurs near the chain boundary: 

6 , ~  r + (�89 (7) 

where 6 = a/7 = 0.21, A6 =0.06 (fl = - 2.4 eV, ? = 5,4 eV [4]). 
Using the UHF method we now consider the electronic structure of a long 

polyene chain with the v-th atom substituted. We make an assumption that such 
a substitution can be approximated by changing an appropriate Coulomb 
integral as: ~ = So + t. As seen from (1), the change of? corresponding to perturbed 
atom can be taken into account by an appropriate change of the effective value 
of ~. We shall consider here such substitutions which can be described by the 
change of the parameters ~ and ? only, i.e. the values of fl are considered to be 
close to those for ideal polyenes. There are a number of substitutions which 
satisfy the above conditons, e.g. H ---, CH 3, C -* N. 

The UHF Hamiltonian for polyenes (1) is a non-linear operator since it 
contains n~~ (6). Therefore, a direct application of the local-perturbation theory 
[16] developed for linear Hamiltonians [17, 18] (e.g., for the tight binding method) 
requires an justification. The correct solution involves an iteration procedure 
usual for the calculations by the SCF methods. Consequently, one can use the 
local-perturbation theory for each iteration. The equation for eigenfunctions and 
eigenvalues in the case of long polyenes with the substitution has the following 
form for the first iteration (e.g., see [17]) 

(fL + tJ - = o ,  (8) 

where H~ is given by (1), the operator A is defined by 

(g,-4q~) = ~] g*(#)A(#,/t')~o(/t') = g*(v)q~(v). (9) 
/r p.' 

Let us present some general results which follow from [17]. Eigenvalues z (i) --qo" 

of the Eq. (8) are determined by 

t v 1+  ~ )  ,0~ =0" (10) 
k , j  ~  - -  " q a  

It follows from (10) that a perturbation of type (9) gives rise to the infinitesimal 
shifts of zone levels: 

z(O = 8(ki) + 7r de~ i) ~(i) (11) 
k,~ N dk  "-'k~ " 

The perturbation of the type (9) can also give rise to a local state splitting off 
zones. This question will be discussed in the next section. Now, we consider the 
effect of the substitution of an atom placed near the end of polyene chain (v < N). 
Then the shifts in a quasi-continuous spectrum are determined by the equation 
(see Appendix) 

sin2k [ (o sin2vk] 
ctgnO~i~ = - 1 - - , ~ I 2 k ~ ( V ) ~  I , (12) 

2 2 E ~ ( v )  s i n e v k  S l I I  ~ K ] 
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where 2 = t/l~l, 

= [@ + ( -  lyo o]. 03) 

The eigenfunctions corresponding to the eigenvalues (11) can be written as 
(for the derivation, see Appendix) 

~o~*~(#) = ~ / ~  d~(,u) sin(k*l~- nO~)), ( ,U> v), (14) 

1 ~ ~(i" 
q)~(,u) = F--~-Ck;( ,u)s in(vk-rcO~)sin,uk/s invk,  (,U < v), (15) 

r = ~ de'~i)dk s innO~/ ( td~ (v ) s inkv ) '  (16) 

~ - ,  n ta(i) It follows from that the where C(k~)(,U) = ~ C~)(,U ) sin,uk, k* = k + ~ -  '-'k,. (14) 

perturbation results in the phase shift of the eigenfunctions for/~ > v. In order 
to define under what conditions the relations (10) (t6) correspond to the self- 
consistent solution of Eq. (8) we evaluate nuo. Transforming (14) yields for the 
zone-state density at the ,u-th atom 

1 [n~,, )-] . . . .  = ~ [~;~ 2=  ~- + ( - 1 )  "+~ 6uz,, 
k (17) 

a ~12 
+ -  ~ dk[cos(2,uk 2 ''/~(i)~'q/o(2) V). - 'o~k~JJ/Ok (,U > 

7~ 0 

Comparing (17) with (6) one can see that the perturbation effect on the zone- 
state density is transferred along the chain in the same way as the influence of 
its boundary, i.e. it sharply attenuates (2 I~'-vl times at the distance [,U-v[). Thus, 

nt t)- , (o)  It means that regardless of the non- if ,U-v>> 1 then (17) leads to . , ~ - , . , ~ .  
linearity of the UHF equations, the impurity effect is local as in the case of linear 
Hamiltonians. Following [17] one can obtain for the electron density at the 
impurity atom (see Appendix) 

. (a) d V (~.(1) e(1)~. (~-8) 

%~ dt k 

Taking into consideration Coulson's and Lonquet-Higgins' relation [19], we 
reduce the expression (18) to the form 

d 1 
n(t) _ ~ zd In [M~(z)/M~~ , (19) 

~ dt 2hi c 

where the integration is in the positive direction along the infinite half-circle 
(Rez<0)  and imaginary axis in the complex plane z; M~(z) and M~~ are 

,u) and z =  dk 1), respectively. The determinants which vanish at the points z = "k, 
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expression (19) can be written as [20] 

d 1 
zdln [1 - tGo~(V, v; z)] 

@~)-= dt 2rci c 

2rcil ~ i f {  - ~.dz l n [1 - tGo , (V ,V;Z) ] ,  

where the function 

is the Green function: 

(J) (J) 

Go&,  #; z) = ~ z - ~ )  

(20) 

(21) 

N 

y~ [n~(u, #3 -  za.. ,]  6o~(~', v; z) = - ~.~. 
/ t ' = l  

The equivalence of expressions (19) and (20) results from the fact that in 
accordance with (10) the functions in bracets in (19) and (20) have simple poles 
and zeroes at the same points. Having failed to obtain general analytical ex- 
pressions for (17) or (19) we now discuss some limiting cases. Let [2] ~ 1. Then 
the integrand in (20) can be expanded in the series of 

n(i)= 1 ~cdZGo~(V,V;Z) ~ [)~[fllGo~(V,V;Z)]," (22) 
~ 2rci n = 0  

According to (21) IflGo,(V, v; z)l <1 if z e C. Therefore, the series in (22) 
converges regularity if [21 < 1 and z e C. As a consequence, integrating (22) term 
by term yields by term yields 

rt 1) v~ = ~ [C(kl~)(v)] 2 [2L(~)~(v)sin2vk/sin2k]" . (23) 
k n = 0  

It follows from (23) that 

( 1 ) _  (o) n w - n w + 0(2), 121 ~ 1. (24) 

Thus, if [2[ is small, the solution of (8) given by (10)-(18) and corresponding 
to the first iteration of the self-consistency procedure for a long polyene chain 
with impurity is a self-consistent one. The equation of second iteration has the 
following form 

N 

~, {H,(#,  # ) + tA(#, + ~ Ln,~- (t) _ nu~(~ f u , , -  z6,u,} (25) 
W = I  

Let us consider this equation for the case v = 1, i.e. when the perturbation is 
localised at the first atom of the chain. It follows from (23) that 

n(1)_ n(O) = ~ ~y(_ 1)" f,~ = - 2A(~)/7, (26) 
n = l  
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where A (1) > 0, 

= - -  5 dksin2 k - ( ~  + d2 + d%)"+1 
IZ o ] / / ~ 2  k + d2 

As seen from (26), the correction - 2 A  {1) to the perturbation has the opposite 
sign to the initial perturbation 21fl[. Consequently, if 2 is finite, the impurity is 
screened with zone electrones, as one should expect. It means that the effective 
value of the perturbation parameter [2'1 is less than 121. It is easy to verify using 
(23) that this result is also valid if v ~ 1. 

In order to evaluate differences -u~ n(1) - "u~'~(~ for # > v we now concider another 
limiting case: 12[ + oe. Then it follows from (12) that rcO~i~ ) + vk. Hence, the relations 
(14)-(16) take the form 

lim (p(k~)(#)= / Ctk~(# V), (/~>v) (27) 
I~l-~ ~ LO (~ < v) .  

It follows from (27) that a strong perturbation tears the link consisting of v atoms 
off the chain. It is obvious that the functions (27) are self-consistent for the chain 
consisting of N - v ~ N atomes because they coincide with the self-consistent zone 
functions of an ideal polyene chain. Substituting (27) into (17) and using (6) and 
(7) we obtain 

n . )  co) = I ~ - ~ -  6~1 _-__ I~1 - 621 : 0.09. (28) ~o - n .a  I 

It means that the changes of values n~o (/t > v) are small even though the parameter 
121 changes from zero to infinity. Thus, in order to obtain the zone functions qCki~)(#) 
of a long polyene chain with the v-th atom substituted (v ~ N) as/~ > v, it is quite 
sufficient to restrict oneself to the first iteration of the self-consistency procedure 
for any value of the perturbation parameter 2. In particular, if v = 1 one can 

s u p p ~ 1 7 6  ",~ . I t m e a n s t h a t t h e n o n - l i n e a r i t y o f E q . ( 8 )  

can be neglected except for the fact that an initial perturbation parameter ,~ is 
to be replaced by its effective value 2', 12'1 < 121. On the other hand, if v r 1 and 
12l >> 1 then functions q~,(#) (/~ < v) are to be close to the corresponding functions 
of a short polyene chain consisting of v - 1 atoms. It should be also noted that 
calculating n~)-values, we neglect the contribution of local-state functions, which 
have the amplitude (see Appendix): 

Iq)p~(P)[ = C( e -  ~lt~-vlq~ -I- e - ~(u+ ~)qo) , (29) 

where qo > 0. Hence it is clear that the functions are localized near the substituted 
atom. If 121 >> 1 then qo >> 1, i.e. q~p,(/z) ~ g),~, if 121 ~ 1 then q~p~(#) ,-~ 2 (see Appendix, 
the relation (A17)). Thus, taking into account the local-state functions does not 
affect the relations (24) and (28). 

Local States 

General results obtained in the preceeding section can be used to consider 
the local electronic states in polyene chains with impurity. 
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As stated by Lifshits 1-17] and Koster and  Slater [18], the wave functions of 
local states are determined by the equations 

q).(v) = - ~ Go~(V, # ' ;  z ) t n , . q ) . ( # ) .  (30) 
#,l~' 

Here t.v is the matrix of perturbation produced by substitution. If, for example, 
only one of the Coulomb integrals ~ v ~ o  + t A ~ o  changes, then tnn, = thnn,bn~ o. 
To solve (30) the following relation should be satisfied 

Det [~u~" + tun' Go~(#, #'; z)] = 0. (31) 

The relation (31) gives the equation for evaluating the energies of local states. 
Substituting e~J) and C~J2(/z) from (2)-(3) into (21) one can obtain expressions for 
Go.(#, v; z) for the most interesting case of local states in the forbidden zone: 

Go~(2#, 2 v; z~) = (z~ - a%) (2/32 sh O)-1 (_  1)n-~ [e-I.-~L o _ e-In + ~1 o- 1 

Go.(2/~ - 1, 2v - 1; z.) = (z. + a%) (2/32 sh O)-1 (_  1)n-v [e-In-~1 o + e-I .  + ~lo] 

Go,(2# - 1, 2v; z~) = ( -  1)n- ~(/3 sh O) -1 [sh#O - sh(# - 1)O] (v > #) (32) 

G o ~ ( 2 1 ~ - l , 2 v ; z ~ ) = ( - 1 ) " - ~ ( B s h O ) - 1 [ 1 - e ~ 1 7 6  (v<#) 

- (z~ - a z - 2/32) 
where O is given by the relation ch O = - -  

2/32 
The Green functions determined by (32) are identical with those for a diatomic 

(... A -  B -  A -  B ...) chain with equal bonds in tight binding approximation 
(see the expressions (9a)-(9g) in [15,1 for/31 = f12 and z = a%). If the values of nv, 
were independent of v this fact would be concidered as trivial because the Hamil- 
tonian (1) and that of [15] are identical. However, as follows from (6), n~, depends 
on v and the self-consistent field near the end of a chain differs from the one in 
the middle of a chain. Thus, the Hamiltonian (1) differs from the Hamiltonian 
of [15] and coincides with the tight binding Hamiltonian for the diatomic chain 
in the case of the specific change of the Coulumb integrals ~nA and ~,B when # 
increases. As the Green functions of [-15,1 and (32) are identical, one can use the 
results of [-15] to consider the conditions under which the local states arise. These 
conditions corresponding to the simplest perturbation, which is described by the 
change of the Coulomb integral of an atom or resonance integral of a bond, can 
be formulated as follows. 

The infinitesimal change Ac~ of the Coulomb integral of an odd atom is 
sufficient to give rise to a local state in the forbidden zone. 

On the other hand, the perturbation of an even atom with number 2l generates 
the local state in the forbidden zone only if 

IA~I > 2/3 z [ 1 / ~  + 4fl 2 + a]-1  L (33) 
- l 

The wave function and the energy of the local state caused by the perturbation 
of the first atom will be considered in more detail. Substituting v=  1 and 
tu~ = t f n ~ f n l  into (31) one can obtain 

0 =  1 + 2[~p~ - d z J  (1 + e - q ~  (34) 
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with 

and 

with 

zv~ < d  
chqo=t+2(d2-~p2~) ;  Zp~-12/71 ' 

0 = 1 - 2 [~p~ - d%] (1 - e-Q~ 

ch Qo = 2 [~2 _ d 2] _ 1; [~p~] > ~ d 2 . 

(35) 

(36) 

(37) 

As seen from (34), the infinitesimal change of the Coulumb integral of the 
first atom actually leads to the local state appearing in the forbidden zone. Its 
energy distance from the edge of the gap is equal to 

I~p~ - a I ~ a22 = 1, 122 (eV). 

In the case of large perturbations 2 ~ _ ~ the Eq. (36) gives for the energy of 
local state: ~ p ~  + ~ .  

Using the general Eq. (30) one can obtain the wave function of a local state, 
the first atom being perturbed 

#-1 #--1 

q~,~(p)=zv. ( - 1 )  2 e 2 qo, (# i sodd)  (38) 

# # 

~Pv-(#) = ~v-2( -  1) 2 e 2 qo (# is even). (39) 

Here z;.  = (1 -e-2"~ + 22 e -2q~ and qo are determined by (35). In accordance 
with (36) the greater the perturbation parameter the higher the degree of the 
localisation of the wave function of the impurity level in the region of impurity. 
It can be shown that the situation is exactly the same when v # 1. 

If the perturbation of a chain can be simulated by a small change of the 
resonance integral of a bond, then it does not cause the local states to splitt off 
the allowed bands. 

Discussion 

Derived in the preceding section properties of local states differ essentially from 
those obtained under the assumption that the energy gap in the spectra of long 
polyene chains is due to the bond alternation [13]. In the latter case the perturba- 
tion giving rise to the local state in the forbidden zone is ~ 1/1 (1 is the number 
of a perturbed atom) both for even and odd I. Thus, in contrast to the above 
model, the generation of a "surface" state (l = 1) is most difficult. In addition, 
the appropriate change of the resonance integral of a bond (weakening of a 
stronger bond or strengthening of a weaker bond) leads to two local states 
appearing in the forbidden zone. 

The recent theoretical results [6, 12, 21, 22] provide an evidence in favour of 
the electron-correlation nature of the polyene-spectrum gap. But it appears likely 
that the question still remains doubtful [see, e.g., 23-25]. The above mentioned 
differences in the properties of local states can be used to investigate experimentally 
whether the energy gap is due to electron correlations or its appearence is a 
consequence of the bond alternation. 

The results obtained seem to be useful in the study of the following question. 
In contrast to polyenes, the first optical transition frequency in the symmetric 
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cyanide dyes tends to zero when the conjugated chain of the dye is lengthened [26]. 
Nevertheless, the long conjugated chains cyanine dyes and polyenes differ by 
their end groups only. Then, it is natural to correlate the above difference in the 
optical spectra of these molecules with the effect of nitrogenium atoms of the 
end groups of cyanine dyes. Indeed, the insertion of nitrogenium atoms into the 
chain can give rise to a local state near the bottom of an empty zone. As a con- 
sequence, the first optical transition corresponds to the transition of an electron 
from this local level 2 to an empty zone. The energy of this transition is small 
for long chains. Then, the extrapolation of experimental data can give zero value 
(or nearly zero value) of the first transition frequency. 

A p p e n d i x  

In this section we deal with the derivation of main relations used in the 
previous section. At first, we shall consider the sum in (10). 

(i) = [c(J;(v)l 2 4 ~ sin2kv[e~i)+a%(-1) ~] 
~ G 0 ~  ~ ~ 

-q" e k - eq - Oq, eq dq (A 1) 

+ 0 (~-) - [e~)+(-1)~azr  

where we have used (11). To calculate S(~ a) we shall use the method developed 
by Lifshits [17]. Let us denote 

S(i)(q, a) = S~i)(q, a) + Sii)(q, a) (A 2) 

and evaluate apart each of the two sums. 

s(li)(qa)= ~-4 ~ 2nO~~ ,t~(i)\ 

2 _ 2  ~ ~)(i) ~ q  kg~q (,~2 -- e2) ~'k2 -- eq N --q~ dq ] 

2 sin2qv 2sin2qv{ 2 n O~'~ ) 1 } 

Oq~eq dq dq eq k~q ( k - q )  k - q - ~ O ~ i ) ~  

(A 3) 
-t- 0 ~(iq) d'~(iq ) g n ( g n  -- 7gO~ i)) gOg i) 

dq 

- - 2 s i n  2 (0 (i) (i) . -- qvctgnOqf f (eq  deq /dq) ,  

4 (1) 
S(~)(q,a) = ~ -  ~ ~ - - ~  - 2~-~- ~ q ek--eq c&k--c~-os2q dk+O ~ -  , (A4) 

z The conjugated chains of cyanine dyes consist of an odd number of atoms (N). But, the number 
of x-electrons N e is even: N, = N T- 1. If N, = N + 1 then the local state considered above is occupied 
in the ground state. If N e = N - 1 then there is a hole in a valency zone of cyanine dye and the ex- 
planation of optical experiments is trivial. 
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Fig. 1. The contours for the evaluation of integrals in (A6) 

where ~ denotes the value principale (V.p.) of a corresponding integral. In order 
to evaluate (A 4) it needs to calculate 

where 

COSVk 
0 cosk - cos2q dk = 11 + 12 =- 1, (A 5) 

1 ~ e ivx 

I ,  = - f  .~ dx 
cos x - cos q 

e -  i~x (A 6) 1 
/2= 5 - !dx  -. cosx - cosq 

The integrals (A 6) can be evaluated by means of the residuum theory. The 
integral I1 is taken along the contour C1, I2-along C 2. The contours C 1 and C 2 
are given on Fig. 1. After the calculations required performed one can obtain 

ni / e i~= e - l W ) /  sinvq 
res | - -  ~ - -  = n (A 7) 

I = ~ \ c o s z -  cosq :,~=q sinq 

The substitution (17) into (A 5) and (A 4) results in the relation 

1 sin2vq (A 8) 
S~)(q ,a) -  2fl  2 sin2q " 

The Eq. (12) can be obtained from (A 3), (A 8), (A 1) and (10). The eigenfunctions 
of (8) are defined as 1-17] 

(J) (J) 

o~j) z~i) (A 9) 
k , j  ~'k - -  qa  
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The sum which stands in (A 9) is calculated just like as S(i)(q, a). Let us evaluate 
a normalisation constant 4o - - q o "  �9 

i ~i)(v)sinq v 2 2 6) 2 . t z.(i) ] _ _  1 
u=lL [(.,Oq,,(,u)] = detqO/dq q~] N ~k (k-q-~-~-Otqi)JN ] 

(A 10) (1) r  >sinqv 
+0 = 2N(tz~')~) 2 [ (de~O/dq)sinnO~i) ~ = 1. 

Substituting "c~ ) from (A 10) into (A 9) one obtains (14)-(16). It follows from (A 10) 
that 

[ tT~,]  = .y_., j-o~TTO> J k, j k ~  - -~qa  
(A 11) 

Ck~(v) Ck~(v) [ - ,  d z(~ -* d u) u) 1 d z t`,] 

Taking also into account that in accordance with (A 9) and (10) q)~i)(v)=-qa, "r(1) one 
obtains (18). 

Izl 
Now let us consider functions Go~(v, #; z), where ~ r [d, 1/1 + d2], i.e. for 

states splitting off zones. Using (2), (3) one obtains 

[c~J~(v)] 2 
6o~(V, v; z) = - ~ & _  

k , j  Z (A 12) 
+ ( -  1)~d% 

= ~ dk(1 - cosvk)/(cosk + a), 
~lfll o 

where 

~=z/2]fl[; d=a/2[fll; a = 1 + 2 ( d 2 - ~ 2 ) .  

The integral in (A 12) is calculated like as the integral (A 5) except the poles of 
the integrand are in the complex plane k on the lines R e k = 0  (~2> 1 + d  2) and 
Rek = n (l~] < d). Having carried out the calculations required one obtains 

~dk cosvk _ l(-1)Vne-*q~ (a>0)  (A13) 
o cos k + a [n e- ~a~ Q o, (c~ < 0) 

where 
chqo = 1 + 2(d z - -  52), (5 2 < d 2) 

ch Qo = 2( ~'2 - d2) - 1, (Z 2 > 1 + d2). 

Using (A 13) one can calculate all functions Go,(V, I~, z) with ~2> 1 + d z or 
~2< d z. In particular, one can obtain equations for local energies 

1 - tGo,(V, v; zp,) = 0 (A 14) 

and for corresponding functions 

q~wO~) = t~p~ Go~(~, v; zp~). (A 15) 
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The relations (29), (32), (34)-(39) results from (A 14) and (A 15). If 14[ >> 1, then it 
follows from (A 13) and (A 14) that qo(Qo)>> 1. Using (29) and (16) one can see 
that if I,~l < 1 then 

rpo_2 ~ t-2(1 - e - 2 q ) s h 2 q  , (q=qo, Qo) 

hence 

I%~(v) l  2 ~ 4 2 . (A 16)  
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